Skip to main content
Log in

Finite strain numerical analysis of elastomeric bushings under multi-axial loadings: a compressible visco-hyperelastic approach

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

Elastomers have wide and ever increasing applications in several industries. In this work a compressible visco-hyperelastic approach is employed to investigate the behavior of elastomeric materials. The time-discrete form of the material model is developed to be used in numerical simulations. This formulation provides a recursive relation to update the stress in any time step regarding the deformation history. By means of analytical solutions derived for pure torsion of a solid circular cylinder, the numerical implementation is validated and then, the response of an elastomeric bushing is investigated in torsional, axial and combined deformations. These bushings are used in suspension systems to reduce amplitude of vibrations as well as shocks. It is shown that, the numerical model well simulates the non-linear time dependent response of the bushing in different deformation rates. Also, a multi-step relaxation test is simulated to identify the hysteretic behavior. Finally, fully relaxed response of the bushing for torsional and combined torsional–axial deformations is predicted and compared with those of experiment as well as three other constitutive models. The comparisons reveal that, the proposed approach well predicts the coupling effect of axial displacement on torsional moment where it is not the case for other compared models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Aniskevich, K., Starkova, O., Jansons, J., Aniskevich, A.: Viscoelastic properties of a silica-filled styrene–butadiene rubber under uniaxial tension. Mech. Compos. Mater. 46, 375–386 (2010)

    Article  Google Scholar 

  • Arruda, E.M., Boyce, M.C.: A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41(2), 389–412 (1993)

    Article  Google Scholar 

  • Bechir, H., Chevalier, L., Chaouche, M., Boufala, K.: Hyperelastic constitutive model for rubber-like materials based on the first Seth strain measures invariant. Eur. J. Mech. A Solids 25(1), 110–124 (2006)

    Article  MATH  Google Scholar 

  • Bergström, J.S., Boyce, M.C.: Constitutive modeling of the large strain time-dependent behavior of elastomers. J. Mech. Phys. Solids 46(5), 931–954 (1998)

    Article  MATH  Google Scholar 

  • Brinson, H.F., Brinson, L.C.: Polymer engineering science and viscoelasticity: an introduction. Springer, New York (2008)

    Book  Google Scholar 

  • Darijani, H., Naghdabadi, R., Kargarnovin, M.H.: Constitutive modeling of rubberlike materials based on consistent strain energy density functions. Polym. Eng. Sci. 50(5), 1058–1066 (2010)

    Article  Google Scholar 

  • Diani, J., Brieu, M., Gilormini, P.: Observation and modeling of the anisotropic visco-hyperelastic behavior of a rubberlike material. Int. J. Solids Struct. 43(10), 3044–3056 (2006)

    Article  MATH  Google Scholar 

  • Doll, S., Schweizerhof, K.: On the development of volumetric strain energy functions. J. Appl. Mech. 67(1), 17–21 (2000)

    Article  MATH  Google Scholar 

  • Drozdov, A., Kalamkarov, A.: A constitutive model for nonlinear viscoelastic behavior of polymers. Polym. Eng. Sci. 36(14), 1907–1919 (1996)

    Article  Google Scholar 

  • Gent, A.: A new constitutive relation for rubber. Rubber Chem. Technol. 69, 59–61 (1996)

    Article  MathSciNet  Google Scholar 

  • Hoger, A.: A second order constitutive theory for hyperelastic materials. Int. J. Solids Struct. 36(6), 847–868 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Holzapfel, G.A.: On large strain viscoelasticity: continuum formulation and finite element applications to elastomeric structures. Int. J. Numer. Methods Eng. 39(22), 3903–3926 (1996)

    Article  MATH  Google Scholar 

  • Kadlowec, J., Gerrard, D., Pearlman, H.: Coupled axial–torsional behavior of cylindrical elastomer bushings. Polym. Test. 28(2), 139–144 (2009)

    Article  Google Scholar 

  • Kadlowec, J., Wineman, A., Hulbert, G.: Elastomer bushing response: experiments and finite element modeling. Acta Mech. 163(1), 25–38 (2003)

    MATH  Google Scholar 

  • Khajehsaeid, H., Arghavani, J., Naghdabadi, R.: A hyperelastic constitutive model for rubber-like materials. Eur. J. Mech. A. Solids 38, 144–151 (2013a)

    Google Scholar 

  • Khajehsaeid, H., Naghdabadi, R., Arghavani, J.: A strain energy function for rubber-like materials. In: Laborda, N. G. N., Alonso, A. (eds.) Constitutive Models for Rubber VIII, p. 205. CRC Press (2013b)

  • Lion, A.: A physically based method to represent the thermo-mechanical behaviour of elastomers. Acta Mech. 123(1), 1–25 (1997)

    Article  MATH  Google Scholar 

  • Lu, Y.C.: Effects of viscoelastic properties of engine cover sealing system on noise and vibration attenuation. Int. J. Mech. Mater. Des. 3(3), 277–284 (2006a)

    Article  Google Scholar 

  • Lu, Y.C.: Fractional derivative viscoelastic model for frequency-dependent complex moduli of automotive elastomers. Int. J. Mech. Mater. Des. 3(4), 329–336 (2006b)

    Article  Google Scholar 

  • Morman Jr, K.N., Pan, T.Y.: Application of finite-element analysis in the design of automotive elastomeric components. Rubber Chem. Technol. 61(3), 503–533 (1988)

    Article  Google Scholar 

  • Naghdabadi, R., Baghani, M., Arghavani, J.: A viscoelastic constitutive model for compressible polymers based on logarithmic strain and its finite element implementation. Finite Elem. Anal. Des. 62, 18–27 (2012)

    Article  MathSciNet  Google Scholar 

  • Ogden, R.W.: Large deformation isotropic elasticity—on the correlation of theory and experiment for incompressible rubberlike solids. Proc. R. Soc. Lond. A Math. Phys. Sci. 326(1567), 565–584 (1972)

    Article  MATH  Google Scholar 

  • Reese, S.: A micromechanically motivated material model for the thermo-viscoelastic material behaviour of rubber-like polymers. Int. J. Plast. 19(7), 909–940 (2003)

    Article  MATH  Google Scholar 

  • Rivlin, R.S., Barenblatt, G.I., Joseph, D.D.: Collected papers of RS Rivlin, vol. 1. Springer, New York (1997)

    Google Scholar 

  • Shim, V., Yang, L., Lim, C., Law, P.: A visco-hyperelastic constitutive model to characterize both tensile and compressive behavior of rubber. J. Appl. Polym. Sci. 92(1), 523–531 (2004)

    Article  Google Scholar 

  • Tauheed, F., Sarangi, S.: Mullins effect on incompressible hyperelastic cylindrical tube in finite torsion. Int. J. Mech. Mater. Des. 8(4), 393–402 (2012)

    Article  Google Scholar 

  • Treloar, L.: The physics of rubber elasticity. Clarendon, Oxford (1973)

    Google Scholar 

  • Wineman, A., Dyke, T.V., Shi, S.: A nonlinear viscoelastic model for one dimensional response of elastomeric bushings. Int. J. Mech. Sci. 40(12), 1295–1305 (1998)

    Article  MATH  Google Scholar 

  • Wu, P., Van der Giessen, E.: On improved 3-D non-Gaussian network models for rubber elasticity. Mech. Res. Commun. 19(5), 427–433 (1992)

    Article  Google Scholar 

  • Yeoh, O.H., Fleming, P.D.: A new attempt to reconcile the statistical and phenomenological theories of rubber elasticity. J. Polym. Sci. B Polym. Phys. 35(12), 1919–1931 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Naghdabadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khajehsaeid, H., Baghani, M. & Naghdabadi, R. Finite strain numerical analysis of elastomeric bushings under multi-axial loadings: a compressible visco-hyperelastic approach. Int J Mech Mater Des 9, 385–399 (2013). https://doi.org/10.1007/s10999-013-9228-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-013-9228-8

Keywords

Navigation